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This paper discusses the use of a duality theorem for the computation of lower
bounds for relative projection constants. A first application yields a slight improve-
ment of a lower bound which has already been proved by the author. Further
applications concern polynomial projection in the L,-space as well as polynomial
projections in the multivariate case. The derived lower bounds are asymptotically
best possible. 1995 Academic Press, Inc.

1. INTRODUCTION

A very simple but nevertheless a very powerful tool for estimating values
of linear operators is the Lebesgue inequality. Let L be a linear mapping
from a normed linear space X into a second one, say Y, and let the sub-
space U of X be in the kernel of L; then the Lebesgue inequality reads as

ILLSI <L) - dist( £, U),
where

dist( 1, Uy = ing I f— ult.

In the approximation theory, we mostly have the situation that X is a
space of functions and Y= U is a subspace of X, such that L is the error
of a projection P from X onto Y. Under rather general conditions, we have

ILIf=T+[PI

(cf. Cheney and Price [3, Theorem 9]). Hence, projections with small
norms play a very important role. Although, in several settings, much effort
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DUALITY AND PROJECTION CONSTANTS 105

has been made to find a minimal projection, i.e., a projection with a mini-
mal norm among all projections from X onto Y, only a few important min-
imal projections are known explicitly. Even in a case such as X=C[ -1, 1]
(endowed with the supremum norm) and U= Y =P, (the space of all
polynomials of degree at most 2), which, at first glance, appears to be very
simple, it took a long time to determine the minimal projection and that
projection has a complicated structure (cf. Chalmers and Metcalf [1]). It
therefore seems to be hopeless to find minimal projections for settings such
as X=C[—1,1] and U= Y =P, for arbitrary n.

A somewhat weaker problem is the determination of projections with
small norms. For this purpose, we have to say what a small norm is. Let
P(X, Y) denote the set of all projections from X onto Y and let g( Y, X) be
the corresponding relative projection constant, i.e., the infimum over all
norms of projections in #( X, Y). We define the quality of a projection P,
relative to the norm |-|| by the equation

: Ll
qual(Po. |-, X. V)=t

The smaller the quality of P,, the better P, is relative to the norm. If the
quality equals 1, P, is a minimal projection, and if the quality is near 1, we
should not spend too much effort to find the minimal projection, if it seems
to be too complicated. For a sequence (VY,), ., of spaces, we call a
sequence (P,), . of projections asymptotically minimal, if the sequence of
the numbers qual{P,, |-}, X, Y,) converges to 1.

The calculation of relative projection constants in general appears to be
as hopeless as the determination of a minimal projection. Nevertheless, to
estimate the quality from above, we at least need good lower bounds for
relative projection constants. Qur aim is to determine such lower bounds
in a rather systematic way. The basic idea is described in Section 2,
while in Section 3 applications to several spaces of functions and several
subspaces of polynomials in one or more dimensions are given.

2. THE METHOD FOR OBTAINING LOWER BOUNDS FOR
PROJECTION CONSTANTS

First, let us suppose for the following that the subspace U is comple-
mented in the respective space X, i.e., that there exists at least one projec-
tion from X onto U. We then start with the observation that the set of all
projections from X onto the subspace U is an affine subspace of the space
ZL(X, U} of all continuous linear operators from X into U. Thus, we fix an
arbitrary projection P, such that each projection P has the (unique)

640 81:1-9



106 KNUT PETRAS

representation P= P,— A, where A is an element of the closed linear
subspace (X, U) of ¥(X, U),

A (X, U):={P,—P,|P,e 2(X. U)}
={Ae L (X, U} A[u] =0 for all ue U}.

We have
oU, X)= inf |P|
Pe#(X. U)
= inf |Po— (Po— P
Pe X, U)
= inf [Po—All
Aew(X. U)

=dist(P,, (X, U)).

We are now in the typical approximation theoretical situation that we want
to estimate the error of a best approximation from below. The standard
method for doing this is the following application of the Hahn-Banach
theorem (see Singer (9, Theorem 1.17).

Let #(X, U) be the set of all elements of the unit ball of the dual space
L(X, UY*, which annihilate the operators in (X, U); then

o(U, Xy= sup |H[P,]l, (1.1

He Z(X, U)

where P is an arbitrary projection from X onto U.

Hence, each functional in % (X, U) yields a lower bound for the relative
projection constant and we just have to find an appropriate functional H.

The equation (1.1} has been used (e.g, in Light and Cheney [7]) for
characterizing minimal projections, but, in the following, it also proves to
be succesful in obtaining lower bounds.

3. APPLICATIONS TO POLYNOMIAL PROJECTIONS

We will consider some applications of the principle presented in Section 2.

The first one concerns the relative projection constants g(P,,, C[ —1,1]),
where C[ —1, 1] is endowed with the supremum norm. In [8], rather the
same lower bounds for these projection constants were proved. The proof
below is similar, but the version here may elucidate more clearly the
theoretical background. The lower bounds are asymptotically sharp in the
sense that they allow the determination of asymptotically minimal projec-
tions, which are, e.g., the projections C!"’ onto the partial sums of the
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Chebyshev expansion of the first kind. Note that the norm of C!" is equal
to the Lebesgue constant L, being the norm of the nth Fourier partial sum
operator.

THEOREM 1 (See also [8]). Ler C'" be the nth partial sum operator of
the Chebyshev expansion of the first kind; then,

4 1
P(lnn—lnlnn)+§<g(ﬂ),,,C[—l, 1))

4
<ICVI<SIn2n+ 1)+ 1
4

In the second example, we investigate the relative projection constants
o(P,, [ —1,1]). The best-known lower bounds were proved by Gérlich
and Markett [6]. They can be improved by factors of approximately 2.
Again, our new bounds will be asymptotically best possible. The projec-
tions C'> onto partial sums of Chebyshev expansions of the second kind
are asymptotically minimal.

THEOREM 2. Let C'Y be the nth partial sum operator of the Chebyshev
expansion of the second kind; then,

4 1 )
P(lnn—lnln'1)+z<a(fp’mLl[—l, 1<

4
=L,,1€£=5In(2n+3)+1

]

Our third example is a simple but nontrivial generalization of Theorem 1
to the multivariate case. Let P, = ® 7., P, < C([ —1, 1]™) be the space of
polynomials, which are of degree less than or equal to #, in the ith variable.
Furthermore, let C, be the generalized Chebyshev projection from

C([-1,1]™) onto P,

AN " .
Cn[f](x)':(;) J( . Z H T;\.“,(xi) Tz‘,(t,‘)(l _t,‘)i““ dt,
o ki<n;

i=1

where T =T, ifk>1and T§(x)=./1/2

THEOREM 3.

m 4
1 <7—t5(ln n,—Inln n,)+%><g([p.,, C[—-1,11M)
i=1
m 4
<G <T] <7—r—zln(2n,+ 1)+ l>,

i=1
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Le., the generalized Chebyshev projections are asymptotically minimal if each
of the n, is increasing.

The proofs of all the theorems are based on a certain property of the
corresponding Dirichlet kernel. Let < Z™ be a finite set indices. Then, the
(generalized) Dirichlet kernel is defined by

"

D (ey=2" % [T cos* vz,

v, v eli=1

where the asterisk means that the cosine has to be halved if v,=0. The
corresponding set of polynomials shall be denoted by P, and it contains all
linear combinations of the terms T, (x,)--- T, (x,,), where (v,..,v, )Jel
The definition of the corresponding Chebyshev projection, C,, is as follows.

C,[ f{cos x4, ..., cos x,,)

1

j Sleos ty, ., c081,) Y DAty XXy, 0 1,1 X,,) dE,
(271) [o, )™

where the summation runs over all combinations of signs in the argument
of D,.

DerFINITION 1. We call a sequence of functions f,: R — R local, if, for
arbitrary & >0,

. g[ &) lfn(x)l ({X
lim =

= e L)) dX

Lemma 1. Let I(n) be index sets such that the D, form a local sequence
of Dirichlet kernels, then, the corresponding generalized Chebyshev projec-
tions are asymptotically minimal in Z(C([ —1,1]"), Pg,,)

Let I(n,m)={(vy, .., v, }|v,;=0, 7, v,<n}. Then, we denote by C}’
the Chebyshev projection with image P :=P,, ,.,. The image is thus the
space of polynomials of maximal degree » in m vartables. No simple expres-
sion is known for the Dirichlet kernel, and therefore for the corresponding
kernel function of the Chebyshev projection, if m>2. For m=1 we have
the usual Dirichlet kernel and for m =2 an explicit expression was given by
Daugavet [4]. Nevertheless, we can prove that the Dirichlet kernels D7
are local.

THEOREM 4. The Chebyshev projections C7' are asymptotically minimal
in 2(C[ =1 117), P7).
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Remark. Theorems 3 and 4, as well as Lemma 1, also hold for projec-
tions from the corresponding L,-spaces onto polynomials. (In the lower
bound in Theorem 3, the constant 1/3 then has to be replaced by 1/4).

4. PrROOF OF THE RESULTS

Proof of Theorem 1. The last inequality in Theorem 1 is known (see
Watson [ 10]). To prove the fower estimate, we note that there is a one-to-
one norm-preserving mapping from 2(C[ —1, 1], B,) to 2(C[0, =], T¢),
where (C“[0, n] denotes the space of all even, continuous, 2z-periodic
functions and where

T¢= {tl f(x)= ) a,cosvx,a,€ IR}
yv=20
(cf. Cheney [2, p.214]). However, the notation in C[0, n] is slightly
simpler and we will therefore prove the theorem in the latter setting.
First define the even 2n-periodic function / by

sgn D,(¢) if tel0,¢]

0<e 4.
0 it relen], <e<m/2, (41)

htt)=h,,(t)={

and where D, is the Dirichlet kernel,

a sinf (n+1/2) x]
D(x)=1+2 ugl COs VX = Sn72) )

For a given § > 0, we obtain a continuous, even, 2z-periodic function h* by
replacing the discontinuities of /2 by “steep” line segments in such a way
that h* agrees on [0, n] with & except on intervals of total length . If the
steep line segments have their zeros in the discontinuities of & and if J is
sufficiently small, we see that

f" (1) — *(1)| dt = 8/2.
[4]

Define

gX(x, y) =g y)=h*x+y)+h*(x—y).
Since h* is a Lipschitz function, it has a uniformly convergent Fourier
series, h* =3 " ,a,m,, where m (1) =cos rt, such that

xe o
g¥x, y)= Z afcosr(x+p)+cosrHx—y)]=2 ) a,cosrycosry,
r=>0 r=0
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the series being uniformly convergent for all x and y. For any bounded
operator P from C*[0, ] to itself, now define

H[P]= jo” Pl g*1(x)dx,

We verify two points:
(1) IfAisin (C[0,n], T¢), then H[A] =0
Such an A can be written as a finite sum of rank-one operators mapping

onto span m, for 0 < j<n. So consider A4 defined by

0 for 0<r<n

b,m; for r>n.

Atm,1={
Then

Alg¥l(x)=2 Y, a,b,cosrxcosjx,

r=n+1
the series being uniformly convergent for all x. The orthogonality of m,,
and m, now gives H[A]=0.
(2) IH| <[5 gkl dx <m+2(e+0).

Recall #*(1)=0 for e+d<t<n If e+d<x<m—e—J, then h(x+y)
=0 for 0<y<m, hence |g¥| .. =h(x—x)=1 For other x, we certainly
have llg¥| . <2, so the statement follows.

Denote by S¢ the even part of the Fourier partial sum operator, ie.,

1 ¢m
SIS == [ O, (x+»)+D,(x= )] dr.
Q0
Using [|1D,ll.=2n+1, [¢*¥" D, (1)=2n, and [jsgn D,(¢)dr >0, we now

obtain

| pmopm
E;J‘() j() {h*(x‘F}’)-*-h*(x_),-)}

x {D(x +y)+ D,(x—y)} dy dx

HST) =

=§17; f f+ R*(1){ D, (1) + D,(2x — 1)} dt dx

5l

h¥ (WD, (1) + D, (2x — 1)} dt dx
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1 n pE
== h*(t) D
ol [ D ardx
l 2 g 3
— * —
s L h (z)jo D,(2x — 1) dx dt

>§L" fﬁ h(1) D, (1) dt dx

1

ton

2n n
j h(x)j D,(2x—t)ydxdt—(n+1)6
0 0
d 2n
=nL,,—j |Dn(t)1dz+5j ht)dt—(n+1)6
£ 0

;nL,,~j" \D,(1)] di —(n+1)8.

For the third and the fourth equality, we used that both the functions A
and D, are even and 2n-periodic. We use the estimate from [8],
4

n 4 ¢ 4
D (t)| dt <-—— ~+—In—,
L' Al dt S5y eses+oIns

where we choose ¢ =z/2 Inn, and note that § may be chosen arbitrarily
close to 0. This yields the lower bound in Theorem 1. |

Proof of Theorem 2. The last two relations in Theorem 2 are known
(see, e.g., Gorlich and Markett [6] and Watson [ 10]).

We take the function A=#h, , from the proof of Theorem 1 and modify
it again to obtain the continuous function A*, which has the uniformly
convergent Fourier series >, a,m,. Defining

1
g*(cos x,co8 yy=g(x, y)=—=—(h*(y—x)—h*{y + x)),
T+ 2e

we obtain

.

gXx, 1)=2 3 a, U, _(x) U,_ () /(1 =x)(1—=p?),

r=0
where U, is the vth Chebyshev polynomial of the second kind. For any
projection Pe A(L,[ —1, 1], P,), we define the functional H by

g*(x’ ' )

H[P]:J;P[\/l_:_z

] (x) dx.
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Since P may be written as
. |
PLAN= [ plx, ») SO dy,
—1
the norm of P is given by
1
1Pl =sup [ Ip(x, y)ldx

(cf. Franchetti and Cheney [5]), from which we may conclude that

glx, y) dy
1—)7?

iHI =" sup

0 xe[—-1,1]

= f sup |&(x, y) dy <m+2(e+ ).
0 xe[0,n]
Each operator Ae /(L[ —1, 1], P,) can written as a finite sum of rank-
one operators mapping onto span U, for 0 < j<n. Consider therefore A4
defined by

0 for 0<r<n
b, U, for r>n

AU, = {
Then

g*(_r’,)jl K i
A Iy :2 -br, U,, - U l—,“’,
L/T_— (6)=2 % a,br Uy () Ux) /1=

The orthogonality of the Chebyshev polynomials now yields H[ A]=0.
Using [ sgn D, ,(t) dt < 4n/(2n+ 3), we now obtain

, 1 7 pn
HLCM = | ] U= =040
X{D,. (y—x)=D, (y+x)} dydx

2217 f f WD, (t) =D, , (2x — 1)} dt dx

X -7

1 pnopx+= .
+§7?J0 | 0dD, () =D, (23— 1)} drdx

X

1 r7 pe
= — * }
27[.[0 J h (I)Dll+l(t)dtd,\

-t

1 2r n
_ * L
2nf0 h (t)fo Do (2x — 1) dx dt
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J f D, (t)drdx

1 2n n ‘
"E;L ”“)L D, \(2x—tydxdt—(n+2)0

7 1 z N
=nLn+1—J |D, (1) d _EL htydt—(n+2)6

&

™ 2n N
>l | Dy (05" (n42)0.

As in the proof of Theorem I, the result follows. [

Remark. For simplicity, we use the function 4 instead of the continuous
modified functions A* in the following proofs. The modifications are
obvious.

We denote the Fourier partial sum corresponding to a certain index set
I by §;. Let x=(x,, .., x,,,), then we define the even Fourier partial sum by

SiLAIx)=2""3 S, [l £x1, e £,

where summation runs over all combinations of signs. For any projection
P'"¢ onto a space of even multivariate trigonometric polynomials, we may
define a projection PP into a related polynomial space by

PPOI[g](COS Xy, .0y COS '\m Ptng[f] Xpe s m)
where

glty, ..,t,)=f(cost,,...cost,).

Both operators have the same supremum norm. Therefore, it suffices to
prove the results for projections onto spaces of even trigonometric polyno-
mials. A multivariate Chebyshev partial sum operator is thus related to a
Fourier partial sum operator and its Dirichlet kernel.

Proof of Theorem 3. The projection S;, has the representation

m

1
SANO= G | S 6 TTHDLE 304 D8 =)

i=1

Let ¢, depend on n; in the same way as ¢ depends on #» in the proof of
Theorem 1 and let /4, be defined by (4.1). Then, we set

n 1
g(x, &) =T] Yy

i=1

(h, (& +x)+h,(E—x))
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and

HLPI=[  Plgx,)](x)dx. (42)
[o.m)”
We have He Z(C([0,n]™), T¢) and obtain

m I n
HIS;) T (it 26) =55 [M:m TT (D, (430 + Dy (6= x0)

i=1

X (h, (& + x)+ R, (& —x;)) dx dE.

Completely analogous to the proof of Theorem 1, this may be estimated
below by

I (n i~ 1D, () dr),
i=1 &

which yields the lower estimate of the theorem. |

Proof of Lemma 1. We set [=1I(n) and define

I _{sgnD,(x) if xe[ —¢&e]”
nx)=10 if xel[—ma]"\[—e &]™

and

gx, &) =(n+2e)""Y h& txy, .. ¢, 1 x,),

where the summation runs over all combinations of signs between &, and
x;. Then, the functional H, defined as in (4.2), is in Z(C*([0, z]™), T%). We
obtain

1

(T{ + 28)”' H[St;] :W J‘[()_n]b" <Z Dl(él ixl v ey ém ixm)

X hl(él i_xi LR ém i xm)) dé dx~

We first consider the case that, in this expression, D, and 4, have a different
sign in a corresponding argument & + x,. Without restriction, let &, + x,
appear as an argument of D, and let £, — x, appear as an argument of /,.
Then,
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f (D& +x, 81 x,, ., &, x,)
[0.7!]2”'

X hl(él —xl’ 52 ixZ’ sy fm i xm)) dé dx

gfo" f‘ [ D28, — 1, 834 X3y oy & £ %)

& —n Y0, n]lm—l

Xh(t,E3 2 X5, s & X, dEy dxy - dE,, dx, dr dE,

<j J j N iDI(zé]_LCZixZ"", émixm)
0 Y—nd[0, n]}¥m-2

xh(t, &+ x,, ., & X, N dEydx,---dE, dx,, dx,, dt dE,

<26‘J‘ j IDl(él’ézixz""a émixm)l

[—n 7] Y(0, n)2m—2

X d§2 dx2 e dém dxm dél

<2£7{m7l J

[—m ]

2¢
|D (&) de == 7)™ 1551
We now consider the integral
J’ (Z Dl(éli-xl""* cmixm)'hl(c]ixli'“* émixm)> df.dx» (43)
[0, n3»

where the summation runs over all signs, where the arguments of 4, and D,
coincide. Then, for a fixed vector &, the integration of D, h; with respect to
X runs over an m-cube with edge length 2z and center in &. Since D, is
2n-periodic in each variable, the integral in (4.3) equals

| ID,(x)| dx.

I e eq
The assumption that the D,= D, are local now yields
H[ 85,1 Z 187, =27 1185, 1 + oCl 87,11

Since ¢ >0 may be chosen arbitrarily, the lemma follows. |

Proof of Theorem 4. We have to prove that the Dirichlet kernels D"
are local. It can be shown that
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sin Nx,
2 DY) =—— 1Y co! Vx,+x,, X, X5, X EX,)
” ) Sln( 1/2) X, Z n 1= "2 1 3 s vl n
cos Nx, S 1)

1

‘WZ s n ('\.l i X2, X ix?&v s X i—xm)a (44)

where the summation runs over all combinations of signs, N=n+1/2, and
where

o™ty iy ty) = > cos*(vity+ - + v, 1,
vi+ o+ vmEa
and
SUE oy 1)) = Y sin*(v t,+ - +v,,1,).
i+ o e

Here, the asterisk means that the term has to be halved for each index v,,
which appears in the argument and equals 0.
At first, we prove the following lemma.

LEMMA 2. The functions si™ and co!™ are local.

Proof. We show the lemma by induction over the parameter m. For
m=1 it is well-known. The step from m to m+ 1 is as follows.
Let x = (x,, .., X,,), then we have the recurrence relations

1

(pt+ 1) . —
co, X0 X) = S /3 s

(sin Nxgco!™(x) — Xg, s X, — Xg)

R Xg . )
+€08 Nxo silf(xy — Xg, ooy X, — Xg) — COS 0 sifmy x))

and

1
~2sin(1/2) x,

slm4 Ly o ] H - . -
slnm ("()s x) <SIn NxO Sl”m‘(xl T Xy ey Xy, T ’XO)

./YO
— 008 Nx €0 (x| — Xg, s X, — Xp) + €OS 5 coﬁ,’”’(x)).

Let ¢>0 be arbitrary and let keN and 6>0 be so chosen that
(k+1)6<e Then,
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[sit”+ 1 xq, x)| dx dx,

”

5, =

J[ —ee]mr!

fkd . 1

\

3 ainl(v ) l ISiI’l Nx() Si‘"”(,\‘, — Xgs s X —.\'()H
24 ‘}[J. (k+1}16]7 2 Sm(.\‘(,/l) < n 4 ”

> dx dx,

Xp
- ICOS N’\.U Coiym)(xl - .\'0, sens '\‘m - x())‘ ' — |COS '5 CO‘”"”(X)

|sin N.\'(,lJ[ - [si!™(x)] dx
-8, 9"

A 1
P 0
Jg,)’ 2sin{xy/2) (

— |cos Nx,) J [co!”(x)| dx
[—ad.87"

X
cos — J‘ fco!”(x)] dx> dxg
2090 moam dapm

ko

z| T
J:,s 2sin{x,/2)

(nn

| Isin Nxo| [sil”[l) — |cos Nxgl f[eoy™ | | dx

akd 1
| T {r1) .
+o <JM 5 S~in(“—.\'[,,‘/2) (s, + {lco,” 1) (i\()).

Let o, f>0 and let
fla, ) ::JJr |a | sin x| — f8 {cos x] | dx.
Q0

Then, using the characterization theorem for best L,-approximations, we
obtain

S, )= max{min f(7, §), min f(a, 1)}

o (A5 )
= 2(\/§— 1) max{a, f}.

This yields the estimate

31 ko y
g ;f (1 +o(1}) max{ {si"},, ;1coj;"’ul}f ese 20 gy,
n 2

R
20

kd -
. . “ X
+olJsig™ Y, + eo™) ) | ese =Ly,

23

-1 k
= \/ (L4 o(1)) (st + {co™ ) In .
n 2
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On the other hand, we have

(7

£ -

)J’ Isi!+ P xg, X)| dx dx,
[~ 2]

AT 1

Sz 2 {r) () -
I, TmreTey (2 o+ siy™ 1) dxy

&

<A4(llcoy™ Iy + [isiy™ 1)) In tan a

(4.5)
When replacing x, by any x;, the same estimate also holds, such that

f ISi‘nm+ 1)(-\‘()3 X)' dx d,\'o
[ = a)"\] —& &)™

<40m-+ D(licoy |+ Isiy™[) In tan %, (4.6)

Since for each fixed ¢ the number k is arbitrary, we have that si{”*" is
local. Analogously, it may be poved that co!” *' is also local. |

12

We are now in the position to prove that D” is local. As in the proof of

n

Lemma 2, we choose (k + 1) J <e¢, such that

sk o
f IDy(x)] dx > | J ID"™(x)] dx =: d.
[—eel” 26 Y[

Sotk+1ysyn-]

If, in the representation (4.4), a term x, + x, appears, then the argument of

sit” =1 resp. of co " is not in [ —J,8]7 ', and hence,

[sin NMx,

kS ]
d>f e J‘
= 25 2m+1 sm(x|/2)< [, (k+1)a]m-!

xco!" N x) —xg, o Xy — X0 dXy - dX,

iim—1)

cos Nx, si,

dx,---dx,,

(X, — X5, 0y X1 —X,,)

JA[l".(/\'+l)(>']"”'

+o(flco,” =Vl + fisiy "H.)) dx,

Ao
=Lﬁ m(l |sin Nx,] icol” ~ ), — |cos Nx,] Jisi?” = "), |
x,/2

”

+o(flco V| + Isi™ V) dx,.

"
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This integral also appears in the proof of Lemma 2 and we obtain thus

-1
d>“Jz3;v_<l Fol1) (s, + eol™ =) ) n &,
i 2

The integral of D7 over [ —m n}”"\[ ~¢ &]” is estimated as in the
inequalities (4.5) and (4.6) above and the theorem is proved. ||
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