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This paper discusses the use of a duality theorem for the computation of lower
bounds for relative projection constants. A first application yields a slight improve
ment of a lower bound which has already been proved by the author. Further
applications concern polynomial projection in the L,-space as well as polynomial
projections in the multivariate case. The derived lower bounds arc asymptotically
best possible. ,( 1995 Al:adt:mic Press, Inc.

I. INTRODUCTION

A very simple but nevertheless a very powerful tool for estimating values
of linear operators is the Lebesgue inequality. Let L be a linear mapping
from a normed linear space X into a second one, say Y, and let the sub
space V of X be in the kernel of L; then the Lebesgue inequality reads as

II L[f"] Ii ~ II L II .dist(f; V),

where

dist(j; V) = inf Ilf- ull.
UE U

In the approximation theory, we mostly have the situation that X is a
space of functions and Y = V is a subspace of X, such that L is the error
of a projection P from X onto Y. Under rather general conditions, we have

IILII = 1+ IIPII

(cf. Cheney and Price [3, Theorem 9]). Hence, projections with small
norms playa very important role. Although, in several settings, much effort

* E-mail address:k.petras(alu-bs.de.

104
0021-9045/95 $6.00
Copyright ((, 1995 by Academic Press, Inc.
All rights of reproduction in any lilrm reserved



DUALITY AND PROJECTION CONSTANTS 105

has been made to find a minimal projection, i.e., a projection with a mini
mal norm among all projections from X onto Y, only a few important min
imal projections are known explicitly. Even in a case such as X = C[ - I, I]
(endowed with the supremum norm) and U = Y = IP' 2 (the space of all
polynomials of degree at most 2), which, at first glance, appears to be very
simple, it took a long time to determine the minimal projection and that
projection has a complicated structure (c[ Chalmers and Metcalf [I]). It
therefore seems to be hopeless to find minimal projections for settings such
as X = C[ -I, I] and U = Y = [P" for arbitrary n.

A somewhat weaker problem is the determination of projections with
small norms. For this purpose, we have to say what a small norm is. Let
:0/( X, Y) denote the set of all projections from X onto Yand let Q( Y, Xl be
the corresponding relative projection constant, i.e., the infimum over all
norms of projections in .0/( X, Y). We define the quality of a projection Po
relative to the norm 11·11 by the equation

qual(Po, II.II,X, y)=-.:I,-,P-,,--ol-.:I
Q(Y,X)

The smaller the quality of Po, the better Po is relative to the norm. If the
quality equals I, Po is a minimal projection, and if the quality is near I, we
should not spend too much effort to find the minimal projection, if it seems
to be too complicated. For a sequence (Y")"E of spaces, we call a
sequence (P"),, E r~ of projections asymptotically minimal, if the sequence of
the numbers qual( P", II ·11, X, Y,,) converges to 1.

The calculation of relative projection constants in general appears to be
as hopeless as the determination of a minimal projection. Nevertheless, to
estimate the quality from above, we at least need good lower bounds for
relative projection constants. Our aim is to determine such lower bounds
in a rather systematic way. The basic idea is described in Section 2,
while in Section 3 applications to several spaces of functions and several
subspaces of polynomials in one or more dimensions are given.

2. THE METHOD FOR OBTAINING LOWER BOUNDS FOR

PROJECTION CONSTANTS

First, let us suppose for the following that the subspace U is comple
mented in the respective space X, i.e., that there exists at least one projec
tion from X onto U. We then start with the observation that the set of all
projections from X onto the subspace U is an affine subspace of the space
2'( X, V) of all continuous linear operators from X into U. Thus, we fix an
arbitrary projection Po such that each projection P has the (unique)

040 ~II·Y
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representation P = Po - A, where A is an element of the closed linear
subspace ,qf( X, U) of ,.'f( X, U),

.CJ1(X, U):= {P,-P2 IP v E.o/(X, U)}

= { A E ,.'f( X, U) IA [u] = 0 for all u E U}.

We have

Q( U, X) = inf IIPII
PE.~(X. U)

inf IIPo - (Po - P)II
PE'~IX. U)

inf IIPo - A II
AE.ofIX.UI

=dist(Po, .CJ1(X, U)).

We are now in the typical approximation theoretical situation that we want
to estimate the error of a best approximation from below. The standard
method for doing this is the following application of the Hahn-Banach
theorem (see Singer [9, Theorem 1.1]).

Let ;;Z( X, U) be the set of all elements of the unit ball of the dual space
,.'f(X, U)*, which annihilate the operators in d(X, U); then

g(U,X)= sup IH[Po]l,
If E .:T! X. UI

( 1.I )

where Po is an arbitrary projection from X onto U.

Hence, each functional in ::t'( X, U) yields a lower bound for the relative
projection constant and we just have to find an appropriate functional H.

The equation (1.I) has been used (e.g., in Light and Cheney [7]) for
characterizing minimal projections, but, in the following, it also proves to
be succesful in obtaining lower bounds.

3. ApPLICATIONS TO POLYNOMIAL PROJECTIONS

We will consider some applications of the principle presented in Section 2.
The first one concerns the relative projection constants g( IP /I' C[ - 1, 1]),

where C[ -1,1] is endowed with the supremum norm. In [8], rather the
same lower bounds for these projection constants were proved. The proof
below is similar, but the version here may elucidate more clearly the
theoretical background. The lower bounds are asymptotically sharp in the
sense that they allow the determination of asymptotically minimal projec
tions, which are, e.g., the projections C:,t) onto the partial sums of the
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Chebyshev expansion of the first kind. Note that the norm of C:,') is equal
to the Lebesgue constant L II being the norm of the nth Fourier partial sum
operator.

THEOREM I (See also [8]). Let C~!) be the nth partial sum operator of
the Chebyshev expansion of the first kind; then,

4 I
7l: 2 On n - In In n) + "3 ~ Q( IP,,, C[ - I, I])

4
~ II C:,lill ~ 2 In (211 + I) + 1.

7l:

In the second example, we investigate the relative projection constants
Q( IP,,, [ - I, I]). The best-known lower bounds were proved by G6rlich
and Markett [6]. They can be improved by factors of approximately 2.
Again, our new bounds will be asymptotically best possible. The projec
tions C~,2) onto partial sums of Chebyshev expansions of the second kind
are asymptotically minimal.

THEOREM 2. Let C;,2) be the nth partial sum operator of the Chebyshev
expansion of the second kind; then,

4 I 1'1
rr. 2 On 11 -In In 11) +4~ Q( IP,,, L! [ - I, I]) ~ II C Il- II

4
= L II + I ~ 2 In( 2n + 3) + 1.

7l:

Our third example is a simple but nontrivial generalization of Theorem I
to the multivariate case. Let IP n = ® 7~ I 1P'1l, C C( [ -1, Ir) be the space of
polynomials, which are of degree less than or equal to 11; in the ith variable.
Furthermore, let C n be the generalized Chebyshev projection from
C([-I, Ir) onto lPn'

(
2)nI . III

CJf](x) = ~ J[ _I. I Jm kI,.D! Tt,(x j ) Tt,(t;)( 1- tJ - 1/2 dt,

where T! = Tk if k;:: I and T~(x) == Jl72.
THEOREM 3.
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i.e., the genera!i:::ed Chebyshev projections are asymptotically minimal if each
of the n j is increasing.

The proofs of all the theorems are based on a certain property of the
corresponding Dirichlet kernel. Let IcE'" be a finite set indices. Then, the
(generalized) Dirichlet kernel is defined by

'"
D/(t) =2'" L: TI cos* V;!i'

( VI ... ,. VIII) EO' I i = I

where the asterisk means that the cosine has to be halved if Vi = O. The
corresponding set of polynomials shall be denoted by IP / and it contains all
linear combinations of the terms Tv, (x I) ... T,.Jx",), where (v I' ... , v",) E I.
The definition of the corresponding Chebyshev projection, C/, is as follows.

C/[fJ(cos XI' ... , cos x",)

I .
=--", J f(cos I" ... , cos t",) L D/(t, ±XI' ... , I",±X",) dt,

(2n) [0. nJ'"

where the summation runs over all combinations of signs in the argument
of D/.

DEFINITION 1. We call a sequence of functions f;,: IR'" -> IR local, if, for
arbitrary G > 0,

. J[ I.'J'" IfJx)1 dx
hm = I.

1/-< Jl-n.nJ'" I.Ox)1 dx

LEMMA 1. Let I(n) he index sets such that the D/11/)form a local sequence
of Dirichlet kernels; then, the corresponding genera!i:::ed Chebyshev projec
tions are asymptotically minimal in .:JI'(C([ -I, IJ"'), IP/II/))'

Let lin, m) = {( VI' •.. , v",) IV j ~ 0, L;'~ I Vi ~ n}. Then, we denote by C;;'
the Chebyshev projection with image IP;;' := IP /(11."')' The image is thus the
space of polynomials of maximal degree n in m variables. No simple expres
sion is known for the Dirichlet kernel, and therefore for the corresponding
kernel function of the Chebyshev projection, if m > 2. For m = I we have
the usual Dirichlet kernel and for m = 2 an explicit expression was given by
Daugavet [4 J. Nevertheless, we can prove that the Dirichlet kernels D~'

are local.

THEOREM 4. The Chehyshev projections C;;' are asymptotically minimal
in ;'11'( C[ -I, I]"'), IP;;').
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Remark. Theorems 3 and 4, as well as Lemma I, also hold for projec
tions from the corresponding L I -spaces onto polynomials. (In the lower
bound in Theorem 3, the constant 1/3 then has to be replaced by 1/4).

4. PROOF OF THE RESULTS

Proof of Theorem 1. The last inequality in Theorem I is known (see
Watson [10]). To prove the lower estimate, we note that there is a one-to
one norm-preserving mapping from ,0/( C[ - I, I ], IP,,) to ,0/( C''[ 0, n], lr;;),
where C''[ 0, n] denotes the space of all even, continuous, 2n-periodic
functions and where

lr;;= {t I t(x) = t a v cos IIX, a v E IR}
V= 0

(ef. Cheney [2, p.214]). However, the notation in C''[O, n] is slightly
simpler and we will therefore prove the theorem in the latter setting.

First define the even 2n-periodic function h by

h - h _ {sgn D,,(t)
(t) - ,,(t) - 0

and where D" is the Dirichlet kernel,

if tE[O,e]

if t E ] e, n],
0< e < n12, (4.1 )

" sin [ (n + 1/2) x]
D,,(x) = I +2 L cos IIX= . /2

v~ I sm(x )

For a given 15 > 0, we obtain a continuous, even, 2n-periodic function h* by
replacing the discontinuities of h by "steep" line segments in such a way
that h* agrees on [0, n] with h except on intervals of total length 15. If the
steep line segments have their zeros in the discontinuities of h and if 15 is
sufficiently small, we see that

r Ih(t) - h*(t)1 dt = 1512.
o

Define

g*(x, y) = g~( y) = h*(x + y) + h*(x - y),

Since h* is a Lipschitz function, it has a uniformly convergent Fourier
series, h* = L:~o arm" where lII r(t) = cos rt, such that

x

g*(x, y) = L are cos r(x + y) + cos r(x - y)] = 2 L: a, cos rx cos ry,
r=O 1'=0
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the series being uniformly convergent for all x and y. For any bounded
operator P from C[ 0, n] to itself, now define

H[P] = rP[g:](x)dx.
o

We verify two points:

(l) If A is in d(e'[O, n], lf~), then H[A] =0.

Such an A can be written as a finite sum of rank-one operators mapping
onto span mj for 0 ~ j ~ n. So consider A defined by

for 0 ~ r ~ n

for r> n.

Then

A[g:J(x) = 2 I arbr cos rx cosjx,
r=Il+J

the series being uniformly convergent for all x. The orthogonality of m"
and m j now gives H[A] =0.

(2) IIHII ~ J~ Ilg:11 dx ~ n + 2(e + 0).

Recall h*(t)=O for e+o<t<n. If e+o<x<n-e-o, then h(x+y)
=0 for O~y~n, hence Ilg:llx=h(x-x)=1. For other x, we certainly
have Ilg: Ilx ~ 2, so the statement follows.

Denote by S;; the even part of the Fourier partial sum operator, i.e.,

1 fTC
S~[fJ(x) =- f(y)[DII(x + y) +DII(x- y)J dt.

n ()

Using IIDll lloc.=2n+l, t+ 2TC D II (t)=2n, and J~sgnDII(t)dt::?O, we now
obtain

I fTC fTC
H[S~]=- {h*(x+y)+h*(x-y)}

2n () 0

x {D ,.( x + y) + D,.( x - y)} dy dx

I fTC fX+TC
= 2n 0 x h*(t){Dn(t) +Dn(2x - t)} dt dx

1 fTC fX+- h*(t){D,,(t)+D,,(2x-t)} dtdx
2n 0 X-TC
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1 I" IE= 2n 0 -E h*(t) D,,(t) dt dx

I I2

" I"+ 2n 0 h*( t) 0 D,,(2x - t) dx dt

I I" IE~- h(t) D,,(t) dt dx
2n 0 -E

1 I2

" I"+- h(t) D,,(2x-t)dxdt-(n+1)J
2n 0 0

I" I2"=nL,,- ID,,(t)ldt+! h(t)dt-(n+1)J
, 0

~ nL" - r/D,,( t)/ dt - (n + I) J.,

1I1

For the third and the fourth equality, we used that both the functions h
and D" are even and 2n-periodic. We use the estimate from [8],

In 4 e 4 4
ID,,(t)1 dt~-- csc - + -In-,

£ 2n + I 2 n e

where we choose G' = nl2 In n, and note that (j may be chosen arbitrarily
close to O. This yields the lower bound in Theorem 1. I

Proof of Theorem 2. The last two relations in Theorem 2 are known
(see, e.g., Gorlich and Markett [6] and Watson [10]).

We take the function h = h" + 1 from the proof of Theorem I and modify
it again to obtain the continuous function h*, which has the uniformly
convergent Fourier series I:~o armr . Defining

_ 1
g *(cosx,cos v)=g(x, v)=--(h*(v-x)-h*(v+x)),. . n+2e' .

we obtain

g*(x, Y) = 2 ~ Q r Ur_1(x) U,_l(Y) j( 1 - x 2
)( 1- y 2

),

1'=0

where Uv is the vth Chebyshev polynomial of the second kind. For any
projection P Eif'( L I [ - I, I], IP,,), we define the functional H by

II rg*( x .) jH[P] = P ~ (x) dx.
-1 '1'1--
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Since P may be written as
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P[f](x) = r p(x, y) I(y) dy,

the norm of P is given by

IIPII = supr Ip(x, Y)I dx
~' -1

(cf. Franchetti and Cheney [5]), from which we may conclude that

fJr I g(x, v) IIIHII = sup j '? l(V
OXE[-I,I] 1-)..-

= r sup Il(x, Y)I dy:::; n + 2(r- + J),
o X E [0, Jr]

Each operator A E ,qf(L I [ -I, I], IP',,) can written as a finite sum of rank
one operators mapping onto span V j for 0:::; j:::; 11. Consider therefore A
defined by

for 0:::; r :::; 11

for ,. > 11.

Then

[
g*(x, . ) J.x ?

A ~ (x)=2 r~o a,b r _ 1Ur_l(x) Uj(x)~.

The orthogonality of the Chebyshev polynomials now yields H[ A] = O.
Using g sgn D,,+ 1(1) dt:::; 4n/(211 + 3), we now obtain

I .Jr fJr
H[ C;,21] =- j {h*(y -x) -h*(y + x)}

2n 0 0

x {D,,+,(y-x)-D,,+dY+x)} dydx

I "X
=2nL L-Jr h*(t){Dn+I(t)-D,,+1(2x-t)} dtdx

1 ." fX+"
+-2 j h*(t){D,,+I(t)-D"+1(2x-t)} dtdx

n 0 x

=~rr h*(t)D,,+I(t)dtdx
2n 0 ··Ie

I f2" . f"- - h*(t) D n + 1(2x - t) dx dt
2n 0 0
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I "l:
~- f f hit) Dn 1(1) dt dx

2n 0 -f.

I f2" . fIT
- 2n 0 h( t) 0 D" + t (2x - t) dx dt - (/1 + 2) ()

fIT If"=nL,,+t- ID,,+t(l)ldt- 2 h(t)dt-(/1+2)li
f. 0

113

f
IT 2n

~nLll+t- ID,,+J(t)1 dt----(/1+2)J.
l: 2/1 + 3

As in the proof of Theorem I, the result follows. I
Remark. For simplicity, we use the function h instead of the continuous

modified functions h* in the following proofs. The modifications are
obvious.

We denote the Fourier partial sum corresponding to a certain index set
I by Sf' Let x = (X J , ••• , x m ), then we define the even Fourier partial sum by

S~[f](x) = 2 -,., L: S/[f]( ±x I , ... , ±xm ),

where summation runs over all combinations of signs. For any projection
ptrig onto a space of even multivariate trigonometric polynomials, we may
define a projection ppol into a related polynomial space by

ppol[ g]( cos XI' ... , cos x,.,) = ptrig[f](x t, ... , x,.,),

where

g(tt, ... , t m ) = f(cos t l , ... , cos tm )·

Both operators have the same supremum norm. Therefore, it suffices to
prove the results for projections onto spaces of even trigonometric polyno
mials. A multivariate Chebyshev partial sum operator is thus related to a
Fourier partial sum operator and its Dirichlet kernel.

Proof of Theorem 3. The projection S~ has the representation

Let f;i depend on Il i in the same way as [; depends on 11 in the proof of
Theorem I and let h" be defined by (4.1). Then, we set
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and
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H[PJ = t.rr)'" P[g(X,· )J(X) dx. (4.2)

We have HE;.;r( C"( [0, n ]"'), lr~) and obtain

m 1 ",
H[S~J . [] (n + 2eJ = (2n)'" J Om [] (D"i((i + Xi) + D",((i - X;))

i~ I [0. rr] i= 1

x (h"i( ¢ i + X,) + hn, ( ¢ i-X,) ) d X d¢.

Completely analogous to the proof of Theorem 1, this may be estimated
below by

which yields the lower estimate of the theorem. I

Proof of Lemma I. We set 1= I( n) and define

if x E [ - e, e]'"

if x E [ - n, n] m \[ - e, t:]'"

and

g( x, () = ( n + 2e) - In L h( ~ I ± XI' ..., ~", ± x",),

where the summation runs over all combinations of signs between .;; and
Xi' Then, the functional H, defined as in (4.2), is in ;.;r(C([O, n]"'), lr~). We
obtain

(n+2e)"'H[S~J=-21In ( (ID,(¢,±XI, ... ,';m±X",)
( n) )[0, rr]''''

We first consider the case that, in this expression, D I and hi have a different
sign in a corresponding argument ';i±Xi , Without restriction, let ';1 +XI
appear as an argument of D I and let ~ 1 - X I appear as an argument of h /,
Then,
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x h[(t, ~2 ±X2, ..., ~m ±X",) 1 d~2 dx2··· d~m dX mdt d~l

~rIn I ID[(2~1 - t, ~2 ± x 2 , ... , ~m ± xm)
o -1l [0. Tr]2m-2

X d~2 dX2'" d~", dx", d~ 1

~2en"'-1 I ID[(O\ d~ = 2e (2n 2
)'" IIS~II.

[-Tf,1lr' n

We now consider the integral

115

where the summation runs over all signs, where the arguments of h[ and D[
coincide. Then, for a fixed vector ~, the integration of D [h [ with respect to
x runs over an m-cube with edge length 2n and center in ~. Since D [ is
2n-periodic in each variable, the integral in (4.3) equals

n'" r ID[(x)1 dx .
• [ -I'., F.]'~1

The assumption that the D[= D/(ll) are local now yields

Since e > 0 may be chosen arbitrarily, the lemma follows. I

Proof of Theorem 4. We have to prove that the Dirichlet kernels D;;'
are local. It can be shown that
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sin Nx
2 1t1 + l Dm(x)= 1 L:co 11tl 1)(X 1±X2'X,±X" ...,x,±xm)

n sin( 1/2) x, n

where the summation runs over all combinations of signs, N = 11 + 1/2, and
where

VI + .. + Vm ~ n

and

si;,ml(t" ...,t ltl )= L sin*(v,t,+ '" +v",t",).
VI + .. + vm::o:;; n

Here, the asterisk means that the term has to be halved for each index Vi'

which appears in the argument and equals O.
At first, we prove the following lemma.

LEMMA 2. The .timetions si~:"1 and co~:") are local.

Proof We show the lemma by induction over the parameter m. For
m = 1 it is well-known. The step from m to m + 1 is as follows.

Let x = (x" ... , x m ), then we have the recurrence relations

and

Let c > 0 be arbitrary and let kEN and 6> 0 be so chosen that
(k + 1) b < c. Then,
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- Icos Nxo co;;")(x, - xo, 000' X m - xoll 1- Icos .~o CO::"I(X )1) dx dx o

~ j'I." 0 1
0

(j1sin N\"o I j' Isi;;"'(xli dx
2,1 2 sm(.\ 0 /2) [ - "0 "1'''

-Icos NXol f Ico::")( x)1 dxl
[-t),t)r 1

-Icos x
o!f . !co;;"I(x)1 dX) dx(}

2 [ _71:, ;rrJm\[ --(i, ()JfIr

.1.,' 1
~ j 0 0 Iisin NXol !lsi;;"'111 -Icos N\"o [ '1Ico;;,,1111 Idxo

2,' 2 sm(.\ 0 /2 )

(

,1.,\ 1 )
+ 0 j (l(si'''')'1 + IIco'''')11 ) dx 0

2,' 2sin(xo/2) , " I \ /I I ()

Let x, [f> 0 and let

f(rx, [1) := j'" /rx I sin xl- fJ Icos xl/ dxo
o

Then, using the characterization theorem for best L) -approximations, we
obtain

f( rx, [n ~ max {min f(t, [1), min{( rx, t)}
I I

= max tf (fi, fJ). f(rx, fi )}
= 2( J3 - 1) max {rx, 11} 0

This yields the estimate

J3 -1 fl." \"
\0>- (l+o(I))max{l(si''''I'1 'lcolm)ll} csc~d\"• /; :;;..--- 1C I II 1 I' 1 Ii I 2/i 2 ~ 0

+ o( jjsi(lIIl lj +jco'1ll1jj l fl." esc X
o (I\"

II ! 1 I n J 2l) 2 ~ {)
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On the other hand, we have
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-tt 1
~ 2 j (21lco lml ll + Ilsi,m)11 ) dx
'" ,,2 sin(xo/2) "I "I 0

(4.5)

When replacing X o by any Xi' the same estimate also holds, such that

f Isilm+I)(, x)ldx{hn ·'0'. ~ 0
[--n, ll']JI1\t ~f;, t;]m

(4.6)

Since for each fixed G the number k is arbitrary, we have that si~:"+ II is
local. Analogously, it may be poved that co::>1+ I) is also local. I

We are now in the position to prove that D;;' is local. As in the proof of
Lemma 2, we choose (k + I) (5 < E:, such that

f ID~:"I(X)I dx ~ j.kl) j' ID:,ml(x)1 dx =: d.
[_r;,r.]m 2() (ii.(k+lldJm - 1

If, in the representation (4.4), a term x I + Xi appears, then the argument of
si ~:"- I) resp. of co ~,m - 1) is not in [ - (5, (5 r I, and hence,

+ o( II co ~,m- I ) III + II si ::" - IIIII )) dx I

k6 I

f (il sin N, I Ilco lm
1 )111 -leas Nxll Ilsi,l,m -I )111 I= 2m + I . ( . /") . I "26 Sill XI ~
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This integral also appears in the proof of Lemma 2 and we obtain thus

The integral of D';; over [-TC, n]"'\[ -c:, c:]m is estimated as 10 the
inequalities (4.5) and (4.6) above and the theorem is proved. I
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